
©2011 Gilbert Ndjatou Page 169

FUNCTIONS

 In addition to function main, a program source module may contain one or more other functions.

 The execution of the program always starts with function main.

 The statements of a function (other than function main) are executed only if that function is called in

function main or any other function that is called in function main.

 After the statements of a function are executed, the next statement to be executed is the one that

follows the statement in which that function is called.

Example

The statements of the program in figure F1 are executed in the following order: 23, 24, 26, 15, 16,

27, 28, 31, 32, 34, 15, 16, 35, 36, and 37.

 There are two types of functions in the C/C++ programming language:

 Functions that do not return a value: void functions, and

 Functions that return a value.

 You can also write a function with or without parameters:

 An example of a void function without parameters is provided in figure F1, line 13 to line 17.

 An example of a void function with parameters is provided in figure F2, line 8 to line 12.

Defining and Calling a void Function without Parameters

 You define a void function without parameters as follows:

 void <function-name>()

 {

 <Body-of-the-function>

 }

<function-name> is the name of the function

void <function-name>() is the function header.

 It may also be specified as follows: void <function-name>(void)

<Body-of-the-function> is the body of the function: It consists of one or more statements that are

executed each time the function is called.

© 2011 Gilbert Ndjatou Page 170

 You call a void function without parameters by using the following statement:

 <function-name> ();

 The program in figure F1 illustrates the definition and calls of a void function without parameters.

Figure F1 Defining and Calling a void Function without Parameters

1. /*----- Program to compute the area and the perimeter of rectangles ------*/

2.

3. #include <iostream>

4. using namespace std;

5.

6. double len, // to hold the length of the rectangle

7. width // to hold the width of the rectangle

8. area, // to hold the area

9. peri; // to hold the perimeter

10.

11. /*------------------------function computeAreaPeri1 ---------------------*/

12. /*------- compute the area and the perimeter of a rectangle -----------*/

13. void computeAreaPeri1(void)

14. {

15. area = len * width;

16. peri = 2 * (len + width);

17. }

18.

19. int main ()

20. {

21. /*-------compute and print the area and the perimeter of a rectangle with

length 20 and width 8 ---*/

22.

23. len = 20;

24. width = 8;

25.

26. computeAreaPeri1();

27. cout << endl << “the area of the rectangle is:\t” << area;

28. cout << endl << “Its perimeter is:\t” << peri;

29.

30. /*-------read the length and the width of a rectangle and compute and

print its area and perimeter ------------------------------------- */

31. cout << endl << “enter the length and the width of the rectangle:\t”;

32. cin >> len >> width;

33.

34. computeAreaPeri1();

35. cout << endl << “the area of the rectangle is:\t” << area;

36. cout << endl << “Its perimeter is:\t” << peri;

37. return (0);

}

©2011 Gilbert Ndjatou Page 171

Global Variables and Local Variables

 A global variable is a variable that is defined outside of the body of any function.

Examples of global variables are variables len, width, area, and peri defined in figure F1, line 6 to

line 9.

 A global variable can be accessed in the body of any function that appears after its definition.

Example

In the source module in figure F1,

 len

 is accessed in the body of function computeAreaPeri1 in lines 15 and 16

 and in the body of function main in lines 23 and 32.

 A function can use global variables to share information with the calling function.

Example

In the source module in figure F1,

 Function main stores 20 into variable len in line 23, and 8 into variable width in line 24 before it

calls function computeAreaPeri1 in line 26.

 In line 15, function computeAreaPeri1 retrieves 20 from variable len and 8 from variable width,

multiplies 20 by 8, and stores the result, 160.0 in variable area.

 In line 16, function computeAreaPeri1 retrieves 20 from variable len and 8 from variable width,

computes 2 * (20 + 8), and stores the result, 56.0 in global variable peri.

 In line 27, function main retrieves 160.0 from global variable area and prints it.

 In line 28, function main retrieves 56.0 from global variable peri and prints it.

 A variable that is defined in the body of a function is a local variable of that function.

 A local variable can only be accessed in the body of the function in which it is defined.

Exercise F1*

Execute the following program and show its output for the input value 7:

©2011 Gilbert Ndjatou Page 172

#include <iostream>

 using namespace std;

 int gnum1, gnum2;

 void funct(void)

 {

 int num = gnum1 + 10;

 gnum1 + = num;

 gnum2 = 2 * gnum1 + 5;

 }

 int main()

 {

 gnum1 = 15;

 funct();

 cout << endl << “gnum1=” << gnum1 << “\tgnum2=” << gnum2;

 cin >> gnum1;

 funct();

 cout << endl << “gnum1=” << gnum1 << “\tgnum2=” << gnum2;

 return 0;

 }

Exercise F2*

Write a void function without parameters computeAreaPeri that computes the area and the perimeter of

a circle which are output in function main.

a. Function main first calls function computeAreaPeri to compute the area and the perimeter of the

circle with radius 5.43.

b. It then reads the radius of a circle and then calls function computeAreaPeri again to compute the

area and the perimeter of this circle.

You must first determine and define the global variables of this program; then write function

computeAreaPeri, and finally write function main.

Exercise F3

Execute the following program and show its output for the input value 15:

 #include <iostream>

 using namespace std;

 int gnum1, gnum2;

©2011 Gilbert Ndjatou Page 173

void funct(void)

 {

 int num = 2 * gnum1 + 5;

 gnum2 = gnum1 + num;

 gnum1 = gnum2 + 10;

 }

 int main()

 {

 gnum1 = 25;

 funct();

 cout << endl << “gnum1=” << gnum1 << “\tgnum2=” << gnum2;

 cin >> gnum1;

 funct();

 cout << endl << “gnum1=” << gnum1 << “\tgnum2=” << gnum2;

 return 0;

 }

Exercise F4

Write a void function without parameters computeTaxNet that uses the gross pay of an individual to

compute his tax deduction and net pay that are printed in function main. The tax deduction is computed

as follows: if the gross pay is greater than or equal to $1000.00, then the tax deduction is 25% of the

gross pay; otherwise, it is 18% of the gross pay. The net pay is the gross pay minus the tax deduction.

a. Function main first calls function computeTaxNet to compute the tax deduction and the net pay for

the gross pay $1250.

b. It then reads the gross pay of an individual and then calls function computeTaxNet to compute his

tax deduction and net pay.

c. You must first determine and define the global variables of this program; then write function

computeTaxNet, and finally write function main.

Writing and Calling a void Function with Parameters

 You write a void function with parameters by specifying the parameters and their data types in the

parentheses that follow the function name in the function header as follows:

void <function-name> (type1 parameter1, type2 parameter2, type3 parameter3, . . .)

{

 <Body-of-the-function>

}

©2011 Gilbert Ndjatou Page 174

 There are two types of parameters in C++: value parameters and reference parameters.

 You distinguish a value parameter from a reference parameter by placing the ampersand character,

& in front of reference parameters.

Example

 void computeAreaPeri2(double len, double wid, double &ar, double &peri)

 {

 ar = len * wid;

 peri = 2 * (len + wid);

 }

 len and wid are value parameters.

 ar and peri are reference parameters.

 Parameters are used in the body of a function in the same way that its local variables are used.

Calling a void Function with Parameters

 You call of a void function with parameters by using a statement consisting of the function name

followed by the arguments between the parentheses as follows:

 For each value parameter, the argument must be a value or an expression.

 For each reference parameter, the argument must be a variable name.

 You must also specify an argument for each parameter.

 The data type of an argument must be compatible with the data type of the corresponding

parameter.

Examples

 Given the following definitions of variables:

 double length = 25.00, width = 10.00,

 area, perimeter;

The following calls of the function computeAreaPeri2 are valid:

a. computeAreaPeri2(27.42, 16.25, area, perimeter);

b. computeAreaPeri2(length, width, area, perimeter);

c. computeAreaPeri2(length + 5.0, 8.50, area, perimeter);

d. computeAreaPeri2(length, width * 2, area, perimeter);

©2011 Gilbert Ndjatou Page 175

The following calls of the function computeAreaPeri2 are invalid:

a. computeAreaPeri2(27.42, 16.25, 50.5, perimeter);

the argument that corresponds to the reference parameter ar is 50.5 which is not a variable

name.

b. computeAreaPeri2(length, width, area, perimeter + 4);

the argument that corresponds to the reference parameter peri is perimeter + 5 which is not

a variable name.

c. computeAreaPeri2(8.50, area, perimeter);

only 3 arguments (instead of 4) are provided.

Exercise F5

Assume given the following definition of function process:

 void process(int vnum, int & rnum1, int & rnum2)

 {

 vnum = vnum + 5;

 rnum1 = rnum1 + 10;

 rnum2 = vnum + rnum1;

 }

And that local variables are defined in function main as follows:

 int num1 = 6, num2 = 9, num3 = 12;

Indicate whether each of the following calls of function process is valid or invalid. Also give the reason

why a call is invalid.

a. process(15, num2, num3);

b. process(21, num1 + 3, num2);

c. process(num3, num1, num2);

d. process(num1, 10, num3);

e. process(3, num1, 25);

f. process(num1, num2, num3 + 4);

g. process(num2, num1);

h. process(num1 + 3, num2, num3);

i. process(5, num3);

j. process(num1, num1, num3);

©2011 Gilbert Ndjatou Page 176

Processing Arguments/Parameters in the Body of a Function

 The following actions take place when a function with parameters is called:

 A memory location is created for each value parameter and the value of the corresponding

argument is stored into it.

 Each reference parameter is replaced in the body of the function with the corresponding

argument.

Example

 Given the following definition of function computeAreaPeri2():

 void computeAreaPeri2(double len, double wid, double &ar, double &peri)

 {

 ar = len * wid;

 peri = 2 * (len + wid);

 }

Assume that local variables are defined in function main as follows:

 double length = 25.00, width = 10.00,

 area, perimeter;

a. After the call statement: computeAreaPeri2(80.00, 50.00, area, perimeter);

The body of function computeAreaPeri2 is executed as if it was written as follows:

 {

 len = 80.00;

 wid = 50.00;

 area = len * wid;

 perimeter = 2 * (len + wid);

 }

After the execution of function computeAreaPeri2, local variables area and perimeter of

function main will have the following values:

 area: 4000.00, perimeter: 260.00

©2011 Gilbert Ndjatou Page 177

b. After the call statement: computeAreaPeri2(length + 5, width, area, perimeter);

The body of function computeAreaPeri2 is executed as if it was written as follows:

 {

 len = 30.00;

 wid = 10.00;

 area = len * wid;

 perimeter = 2 * (len + wid);

 }

After the execution of function computeAreaPeri2, local variables area and perimeter of

function main will have the following values:

 area: 300.00, perimeter: 80.00

Exercise F6

Assume given the following definition of function process:

 void process(int vnum, int & rnum1, int & rnum2)

 {

 vnum = vnum + 5;

 rnum1 = rnum1 + 10;

 rnum2 = vnum + rnum1;

 }

 And that local variables are defined in function main as follows:

 int num1 = 6, num2 = 9, num3 = 12;

1. For each of the following calls of function process, show the body of function process in the way it

is executed after the call.

2. For each of the following calls, execute function process and display the corresponding output.

a. process(15, num2, num3);

cout << endl << “num1=” << num1 << “num2=” << num2 << “num3=” << num3;

b. process(num1, num2, num3);

cout << endl << “num1=” << num1 << “num2=” << num2 << “num3=” << num3;

c. process(num1 + 3, num2, num3);

cout << endl << “num1=” << num1 << “num2=” << num2 << “num3=” << num3;

©2011 Gilbert Ndjatou Page 178

Exercise F7

Assume given the following definition of function computeAreaPeri2 that computes the area and the

perimeter of a rectangle given its length and width:

 void computeAreaPeri2(double len, double wid, double &ar, double &peri)

 {

 ar = len * wid;

 peri = 2 * (len + wid);

 }

a. Write the sequence of statements to compute and print the area and the perimeter of a rectangle with

length 70 and width 45.

b. Write the sequence of statements to read the length and the width of a rectangle and to compute and

print its area and perimeter.

Using Parameters to Share Values between a Function and the Calling

Function

 When you write a void function with parameters, chose the parameters as follows:

 Chose a value parameter for every value that is passed to the function.

 Chose a reference parameter for every value that the function must return to the calling function.

Example

In the source module in figure F2, function computeAreaPeri2 uses the parameters as follows:

 Value parameter len is used to get the length of the rectangle from function main.

 Value parameter wid is used to get the width of the rectangle from function main.

 Reference parameter ar is used to send back the area of the rectangle to function main.

 Reference parameter peri is used to send back the perimeter of the rectangle to function main.

©2011 Gilbert Ndjatou Page 179

Figure F2 Defining and Calling Functions with Parameters

1. /*----- Program to compute the area and the perimeter of rectangles ------*/

2.

3. #include <iostream>

4. using namespace std;

5.

6. /*------------------------function computeAreaPeri2 ---------------------*/

7. /*------- compute the area and the perimeter of a rectangle-------------*/

8. void computeAreaPeri2(double len, double wid, double &ar, double &peri)

9. {

10. ar = len * wid;

11. peri = 2 * (len + wid);

12. }

13.

14. int main ()

15. {

16. double length, // to hold the length of the rectangle

17. Width, // to hold the width of the rectangle

18. area, // to hold the area

19. perimeter; // to hold the perimeter

20.

21. /*-------compute and print the area and the perimeter of a rectangle with

length 45 and width 34 --*/

22.

23. computeAreaPeri2(45, 34, area, perimeter);

24. cout << endl << “the area of the rectangle is:\t” << area;

25. cout << endl << “Its perimeter is:\t” << perimeter;

26.

27. /*-------read the length and the width of a rectangle and compute and

print its area and perimeter ------------------------------------- */

28. cout << endl << “enter the length and the width of the rectangle:\t”;

29. cin >> length >> width;

30.

31. computeAreaPeri2(length, width, area, perimeter);

32. cout << endl << “the area of the rectangle is:\t” << area;

33. cout << endl << “Its perimeter is:\t” << perimeter;

34. return (0);

35. }

36.

©2011 Gilbert Ndjatou Page 180

Exercise F8

Write a void function with parameters named computeAreaPeri3 that gets the radius of a circle and then

computes its area and perimeter and returns them to the calling function: first determine the number and

the types of the parameters that are needed by the function before you write it.

Exercise F9

Assume given the following definition of function process:

 void process(int vnum, int & rnum1, int & rnum2)

 {

 vnum = vnum + 5;

 rnum1 = rnum1 + 10;

 rnum2 = vnum + rnum1;

 }

 And that local variables are defined in function main as follows:

 int num1 = 10, num2 = 15, num3 = 20;

Indicate whether each of the following calls of function process is valid or invalid and:

 For each invalid call, provide the reason why it is invalid.

 Do the following for each valid call:

i. show the body of the function process in the way it is executed after the function call,

ii. then execute function process and show the contents of the variables num1, num2, and

num3 after the function is executed.

a. process(num1, num2, num3);

b. process(num2, num3, num1);

c. process(num1, 10, num3);

d. process(3, num1, num2);

e. process(num1, num2, num3 + 4);

f. process(num1 + 3, num2, num3);

g. process(5, num3);

h. process(num1, num1, num3);

Exercise F10

1. Write a void function named computeProductSum with parameters that gets two integer values and

then computes their product and their sum and returns them to the calling function: first determine

the number and the types of the parameters that are needed by the function before you write it.

2. Write the sequence of statements to compute the product and the sum of 15 and 79 (by calling

function computeProductSum) and then print them.

©2011 Gilbert Ndjatou Page 181

Exercise F11

Write a void function named swapper with parameters that gets two variables as arguments and

interchanges their values if the value of the first variable is less than that of the second variable.

Basic Properties of Functions

1. Definition A function is defined only once by writing its function header followed by its

constituent statements enclosed between the left brace { and the right brace }.

2. Execution At any point in another function where the effect of a function is needed, use a call

statement to pass the control of the execution of a program to that function. After the execution of

the last statement in the body of a function, the control of the execution of the program returns to the

statement that follows the call statement.

3. Placement A function may be called in a source module only if it has been written (defined) or

declared before the call statement.

 Example

In the source module in figure F1, function computeAreaPeri1 is written before function main, and

in the source module in figure F2 function computeAreaPeri2 is written before function main.

 You declare a function by writing its function header followed by the semicolon. This statement is

called function prototype.

Example

1. The function prototype of function computeAreaPeri1 define in the source module in figure F1 is:

 void computeAreaPeri(); or

 void computeAreaPeri(void);

2. The function prototype of function computeAreaPeri2 defined in the source module in figure F2 is:

 void computeAreaPeri2(double len, double wid, double &ar, double &peri); or

 void computeAreaPeri2(double, double, double &, double &);

Notes:

1. The names of parameters may be omitted in the function prototype of a function with parameters.

2. It is a good programming practice to precede a function call with the function prototype of that

function, and to write all the functions (in a source module) after function main (as it is done in the

source modules in figures F3 and F4).

©2011 Gilbert Ndjatou Page 182

Figure F3 Using the Function Prototype of a Function without Parameters

1. /*----- Program to compute the area and the perimeter of rectangles ------*/

2.

3. #include <iostream>

4. using namespace std;

5.

6. void computeAreaPeri(); //to compute the area and perimeter of a rectangle

7.

8. double len, // to hold the length of the rectangle

9. width // to hold the width of the rectangle

10. area, // to hold the area

11. peri; // to hold the perimeter

12.

13.

14. int main ()

15. {

16. /*-------compute and print the area and the perimeter of a rectangle with

length 45 and width 34 --*/

17.

18. len = 45;

19. width = 34;

20.

21. computeAreaPeri();

22. cout << endl << “the area of the rectangle is:\t” << area;

23. cout << endl << “Its perimeter is:\t” << peri;

24.

25. /*-------read the length and the width of a rectangle and compute and

print its area and perimeter ------------------------------------- */

26. cout << endl << “enter the length and the width of the rectangle:\t”;

27. cin >> len >> width;

28.

29. computeAreaPeri();

30. cout << endl << “the area of the rectangle is:\t” << area;

31. cout << endl << “Its perimeter is:\t” << peri;

32. return (0);

33. }

34.

35. /*------------------------function computeAreaPeri ---------------------*/

36. /*------- compute the area and the perimeter of the rectangle-----------*/

37. void computeAreaPeri()

38. {

39. area = len * width;

40. peri = 2 * (len + width);

41. }

©2011 Gilbert Ndjatou Page 183

Figure F4 Using the Function Prototype of a Function with Parameters

1. /*----- Program to compute the area and the perimeter of rectangles ------*/

2.

3. #include <iostream>

4. using namespace std;

5.

6. void computeAreaPeri2(double len, double wid, double &ar, double &peri);

7. //to compute the area and perimeter of a rectangle

8.

9. int main ()

10. {

11. double length, // to hold the length of the rectangle

12. Width, // to hold the width of the rectangle

13. area, // to hold the area

14. perimeter; // to hold the perimeter

15.

16. /*-------compute and print the area and the perimeter of a rectangle with

length 45 and width 34 --*/

17.

18. computeAreaPeri2(45, 34, area, perimeter);

19. cout << endl << “the area of the rectangle is:\t” << area;

20. cout << endl << “Its perimeter is:\t” << perimeter;

21.

22. /*-------read the length and the width of a rectangle and compute and

print its area and perimeter ------------------------------------- */

23. cout << endl << “enter the length and the width of the rectangle:\t”;

24. cin >> length >> width;

25.

26. computeAreaPeri2(length, width, area, perimeter);

27. cout << endl << “the area of the rectangle is:\t” << area;

28. cout << endl << “Its perimeter is:\t” << perimeter;

29. return (0);

30. }

31.

32. /*------------------------function computeAreaPeri2 ---------------------*/

33. /*------- compute the area and the perimeter of the rectangle-----------*/

34. void computeAreaPeri2(double len, double wid, double &ar, double &peri)

35. {

36. ar = len * wid;

37. peri = 2 * (len + wid);

38. }

©2011 Gilbert Ndjatou Page 184

Exercise F12

Write the function prototypes of the following functions:

a. Function computeTaxNet that you wrote in exercise F4.

b. Function computeAreaPeri3 that you wrote in exercise F8.

c. Function computeProductSum that you wrote in exercise F10.

d. Function swapper that you wrote in exercise F11.

Functions that Returns a Value

 You write a function that returns a value in the same way that you write a void function except for

the following two conditions:

1. The return type of a function that returns a value must be a valid C++ data type such as bool,

char, int, float, or double.

2. The body of a function that returns a value must include at least one return statement.

Examples of functions that return a value follow: the first has no parameter whereas the second

one does.

 Example of a Function without Parameters that Returns a Value

 /*--------- this function returns 5 whenever it is called ----------------*/

 int process(void)

 {

 return 5;

 }

 Example of a Function with Parameters that Returns a Value

 /*----this function gets two double precision values, computes and returns their average --*/

 double computeAverage(double num1, double num2)

 {

 double avg;

 avg = (num1 + num2) / 2;

 return(avg);

 }

©2011 Gilbert Ndjatou Page 185

The return Statement

 The syntax of the return statement follows:

 return <expression>;

 or

 return (<expression>);

where <expression> is an expression that evaluates to a value whose data type is compatible

with the function’s return type.

 <expression> is first evaluated and its value is supplied to the calling function when the control of

the execution of the program returns to it.

Executing the return Statement

Given the following definitions of variables:

 char ch = ‘A’;

 int num = 5;

 double dnum = 7.2;

The following return statements evaluate as follows:

 return Statement Function Return Type Value Returned

 return ch; char A

 return num + 6 ; int 11

 return dnum – 3; double/float 4.2

 return dnum – 3; int 4

 return num +6; double/float 11.0

 The body of a void function may (optionally) have a return statement without any expression as

follows:

 return;

 The execution of a function terminates whenever a return statement is executed in that function.

 If a return statement is not met during the execution of a function, the execution of that function

terminates with its last closing brace.

Note:

 The return statement cannot be used to return more than one value.

©2011 Gilbert Ndjatou Page 186

Calling a Function that returns a Value

 You call a function without parameters that returns a value by writing the function name

followed by the left and the right parentheses function-name() in any expression in which the value

returned by that function could be written.

 Example

 Given the following function process():

 /*--------- this function returns 5 whenever it is called ----------------*/

 int process(void)

 {

 return 5;

 }

 The following calls of function process() will produce the specified output.

 1. cout << endl << “Result1=\t” << (process() + 4);

 OUTPUT Result1 = 9

 2. int num1, num2 = 12;

 num1 = num2 - process() ;

 cout << endl << “Result2 =\t” << num1;

 OUTPUT Result2 = 7

Note: If you call function process() as a void function:

 proess();

 nothing will happen.

 You call a function with parameters that returns a value by writing:

 <function-name> (<Arg1>, <Arg2>, . . ., <ArgN>)

 in an expression in which the value returned could be written.

 You specify the arguments <Arg1>, <Arg2>, . . ., <ArgN> in the same way that you specify the

argument of a void functions with parameters.

©2011 Gilbert Ndjatou Page 187

Example

Given the following function computeAverage()

 /*----this function gets two double precision values, computes and returns their average --*/

 double computeAverage(double num1, double num2)

 {

 double avg;

 avg = (num1 + num2) / 2;

 return(avg);

 }

The following calls of function computeAverage() will produce the specified output:

 1. cout << endl << “Average1=\t” << computeAverage(10, 5);

 OUTPUT Average1 = 7.5

 2. int num1, num2 = 12;

 num1 = num2 + computeAverage(num2, 4) ;

 cout << endl << “Average2 =\t” << num1;

 OUTPUT Average2 = 20.0

Function Prototype of a Function that Returns a Value

 You specify the function prototype of a function that returns a value in the same way that you

specify the function prototype of a void function.

Example

a. The function prototype of function process defined above is:

int process(); or int process(void);

b. The function prototype of function computeAverage defined above is:

 double computeAverage(double num1, double num2); or

 double computeAverage(double, double);

©2011 Gilbert Ndjatou Page 188

Exercise F13

Given the following definitions of functions process and computeAverage:

int process(void)

{

 return 5;

}

double computeAverage(double num1, double num2)

{

 double avg;

 avg = (num1 + num2) / 2;

 return(avg);

}

A. Show the output after the execution of each of the following sequences of statements:

a. cout << endl << “Result1=\t” << process() + 2;

 b. int num1 = 3, num2;

 num2 = process() - num1;

 cout << endl << “Result2=\t” << num2;

c. cout << endl << “Average1=\t” << computeAverage(20, 5);

d. int num1 = 4, num2 = 6;

 cout << endl << “Average2=\t” << computeAverage(num1 + 3, num2 - 2);

B. Write the sequence of statements to read two floating point values and to compute (using

function computeAverage) their average and print it.

Exercise F14

a. Write a function with parameter int computeProduct that receives as arguments two integer values,

computes their product and return it to the calling function.

b. Write the sequence of statements to compute (using function computeProduct) the product of 123

and 567 and print the result.

c. Write the sequence of statements to read two integer values and to compute (using function

computeProduct) their product and print it.

d. Write the function prototype of function computeProduct.

Local Variables and Program Blocks

 A C++ program block is any sequence of statements enclosed between the left brace { and the right

brace }.

©2011 Gilbert Ndjatou Page 189

Example

/*-------------- Program to read a certain number of values and to compute their average-------*/

int main()

{

 int total = 0, count;

 { // beginning of the block

 int num; // variable num is a local variable of this program block

 /*---------------------read the number of values to be read ---------------------------------------*/

 cout << endl << “Enter the number of values:\t”

 cin >> count;

 /*---------------------- read all the values and compute their sum -----------------------------*/

 for (int i = 0; i < count ; i ++) // variable i is a local variable of the for-loop block

 {

 cin >> num;

 total + = num;

 }

 Cout << endl << “The last value that you have entered is:\t” << num;

 } // end of the block

 Cout << endl << “The average of the values read is:\t” << total / count;

 return 0;

}

 A variable defined inside a program block is a local variable of that program block and is accessible

only inside that program block.

Scope of Variables

 The scope of a variable refers to the extent of a program over which that variable name identifies

the same memory location:

 the scope of a local variable is therefore the body of the function or the program block in which

it is defined, and

 the scope of a global variable is the body of any function that is defined after that global variable.

 Local variables in different functions may have the same name, and a local variable may have the

same name as a global variable.

 When a local variable has the same name as a global, any reference to that name in the function in

which the local variable is defined refers to the local variable.

©2011 Gilbert Ndjatou Page 190

Example

 The output of the following program is:

 Output

 output from function main:

 num = 10

 output from function proc1:

 num = 5

 value = 6

 output from function proc2:

 num = 10

 value = 8

 Scope of Variables

 #include <iostream>

 using namespace std;

 int num = 10;

 void proc1(void)

 {

 int num = 5;

 int value = 6;

 cout << endl << “num =\t” << num;

 cout << endl << “value =\t” << value;

 }

 void proc2(void)

 {

 int value = 8;

 cout << endl << “num =\t” << num;

 cout << endl << “value =\t” << value;

 }

 int main()

 {

 cout << endl << “output from function main:”;

 cout << endl << “num =\t” << num;

 cout << endl << “output from function proc1:"

 Proc1();

 cout << endl << “output from function proc2:"

 Proc2();

 }

©2011 Gilbert Ndjatou Page 191

Exercise F15

Provide the output of the following program.

 #include <iostream>

 using namespace std;

 int num = 7;

 void proc1(void)

 {

 int num = 10, value = 8;

 cout << endl << “num =\t” << num;

 cout << endl << “value =\t” << value;

 }

 void proc2(void)

 {

 int value = 4;

 cout << endl << “num =\t” << num;

 cout << endl << “value =\t” << value;

 }

 int main()

 {

 cout << endl << “output from function main:”;

 cout << endl << “num =\t” << num;

 cout << endl << “output from function proc1:"

 Proc1();

 cout << endl << “output from function proc2:"

 Proc2();

 }

Default Arguments

 In C++, you can specify in the function prototype of a function, the default arguments of some of

that function’s parameters in the following way:

1. Follow the parameter’s name or the parameter’s type with the equal sign (=), which is then

followed by the default argument.

2. Default arguments may only be specified for consecutive parameters, starting with the right-most

parameter.

©2011 Gilbert Ndjatou Page 192

 The following are valid function prototypes with default arguments:

 a) void foo(int, int = 5);

 b) int goo(float, double, int = 0);

 c) double hoo(char ch = ‘A’, double num = 100.00, int count = 20);

 The following are invalid function prototypes with default arguments:

a. void joo(int = 0, int); // default arguments are not assigned from left-to-right.

b. int koo(char = ‘A’, int , int = 0);

 /* the first parameter has a default argument but the second does not have one */

 After a default argument has been specified for a function’s parameter, you may call that function

without providing the argument that corresponds to that parameter: the compiler uses the default

argument when one is not provided as illustrated in figure F5.

 Default arguments may be constants, global variables, or function calls.

 But they are in general constants that occur frequently when the function is called, and their use

saves writing in these arguments at each invocation of the function.

 When a function with default arguments is called, the arguments supplied in the function call are

associated to the parameters from left to right.

 Any remaining parameters are associated to their default arguments. Figure F5 illustrates calls to

functions with default arguments.

Figure F5 Calling a Function with Default Arguments

 Assuming that functions foo, goo, and hoo have the following function prototypes:

 a) void foo(int, int = 5);

 b) int goo(float, double, int = 0);

 c) double hoo(char ch = ‘A’, double num = 100.00, int count = 20);

 The following table shows how calls to these functions are processed by the compiler.

©2011 Gilbert Ndjatou Page 193

Function Calls Processed by the Compiler as follows:

foo(num, 2); foo(num, 2);

foo(num); foo(num, 5);

result1 = goo(7.2, fnum, 9); result1 = goo(7.2, fnum, 9);

result1 = goo(7.2, fnum); result1 = goo(7.2, fnum, 0);

result2 = hoo(); result2 = hoo(‘A’, 100.00, 20);

result2 = hoo(‘F’, 85.5); result2 = hoo(‘F’, 85.5, 20);

result2 = hoo(‘Z’, 17.5, 30); result2 = hoo(‘Z’, 17.5, 30);

Exercise F16

Assuming that functions joo(), koo(), and loo() have the following function prototypes:

 a) void joo(int, int = 9);

 b) void koo(int, char = ‘F’, int = 0);

 c) void loo(int MaxCount = 100, double rate = 8.25, double base = 250.0);

Specify how each of the following function calls is processed by the compiler:

1. joo(5, 15);

2. joo(20);

3. koo(25, ‘B’, 15);

4. koo(15, ‘A’);

5. koo(5);

6. loo();

7. loo(50, 6.5);

8. loo(150);

9. loo(200, 5.5, 175.5);

Function Name Overloading

 Very often, two or more functions of a program conceptually perform the same task, but the number

and/or the data types of some of their arguments are different.

 For example, you may have a function to compute the average of three integer values, and another

one to compute the average of three double precision floating-point values.

©2011 Gilbert Ndjatou Page 194

 You may also have a function to compute the average of two integer values, and another one to

compute the average of three integer values.

 Giving the same name to these functions can make the program easier to read and understand

 In C++ two or more functions may have the same name, as long as there is a way to distinguish them

based on their parameters.

 This feature is called function name overloading.

 The compiler determines the right version of the function to call from a set of overloaded functions

by inspecting the arguments specified in the function call.

 The example in Figure 14 illustrates the use of overloaded function names in a source module.

Figure F6 Function Name Overloading

Line Number

1 /**

2 Program to compute the average of two integer values, the average

3 of three integer values and the average of two double precision

4 floating-point values.

5 ***/

6 #include <iostream>

7 using namespace std;

8 int ComputeAverage(int, int);

9 // to compute the average of two integer values

10 int ComputeAverage(int, int, int);

11 // to compute the average of three integer values

12 double ComputeAverage(double, double);

13 //to compute the average of two floating-point values

14

15 int main()

16 {

17 int result1, // the average of two integer values

18 result2; // the average of three integer values

19 double result3; //the average of two floating-point values

20

21 result1 = ComputeAverage(4, 5); // call to function defined in line 35

22

23 result2 = ComputeAverage(5, 4, 6); // call to function defined in line 40

24

25 result3 = ComputeAverage(4.0, 5.0); // call to function defined in line 45

26

27 cout << “\n\nresult1=\t” << result1 << “\n\nresult2=\t”

31 << result2 << “\n\nresult3=\t” << result3;

32 return 0;

33 }

34

©2011 Gilbert Ndjatou Page 195

35 int ComputeAverage(int value1, int value2)

36 {

37 return (value1 + value2) / 2;

38 }

39

40 int ComputeAverage(int value1, int value2, int value3)

41 {

42 return (value1 + value2 + value3) / 3;

43 }

44

45 double ComputeAverage(double value1, double value2)

46 {

47 return (value1 + value2) / 2;

48 }

 OUTPUT

 result1= 4

 result2= 5

 result3= 4.5

Static Local Variables

 A static local variable is a local variable of a function that keeps its value between function calls.

 A static local variable declaration statement is preceded by the keyword static.

Example

 Assume given the following two functions:

void procedure1 ()

{

 static int svalue = 0;

 cout << “\tsvalue =\t” << svalue;

 svalue ++;

}

void procedure2 ()

{

 int nvalue = 0;

 cout << “\tnvalue =\t” << nvalue;

 nvalue ++;

}

 The output of the following program follows:

©2011 Gilbert Ndjatou Page 196

 int main()

 {

 for (int ct = 0; ct < 5; ct ++)

 {

 cout << endl << “ct=\t” << ct;

 procedure1();

 procedure2();

 }

 }

 OUTPUT

ct = 0 svalue = 0 nvalue = 0

ct = 1 svalue = 1 nvalue = 0

ct = 2 svalue = 2 nvalue = 0

ct = 3 svalue = 3 nvalue = 0

ct = 4 svalue = 4 nvalue = 0

Exercise F17

Given the following function definition:

void procedure ()

{

 static int svalue = 20;

 cout << “\tsvalue =\t” << svalue;

 svalue - = 2;

}

Show the output of the following program:

 int main()

 {

 for (int ct = 0; ct < 5; ct ++)

 {

 cout << endl << “ct=\t” << ct;

 procedure();

 }

 }

©2011 Gilbert Ndjatou Page 197

Structures and Functions

 The return type of a function can be a structure.

Example

 Assume given the following structure:

 struct EmployeeInfo

 {

 string name;

 double payRate;

 int hours;

 double grossPay;

 };

Write a function to read the information about an employee, place it in a structure, and return it.

 EmployeeInfo readInfo(void)

 {

 EmployeeInfo temp;

 cout << endl << “Enter the name, the pay rate and the number of hours:\t”;

 cin >> temp.name >> temp.payRate >> temp.hours;

 return(temp);

 }

 A reference parameter of a function may have a structure as its data type.

Example

Write a function void computeGpay1(EmployeeInfo & emp) that receives as argument a reference

to an EmployeeInfo structure, computes, and sets its gross pay.

void computeGpay1(EmployeeInfo & emp)

{

 emp.grossPay = emp.payRate * emp.hours;

}

 The data type of a value parameter of a function can be a structure.

Example

Write a function void printInfo(EmployeeInfo emp) that receives as argument an EmployeeInfo

structure and prints the values of its members.

©2011 Gilbert Ndjatou Page 198

void printInfo(EmployeeInfo emp)

{

 cout << “\nNAME:\t” << emp.name

 << “\nPAY RATE:\t” << emp.payRate

 << “\nHOURS:\t” << emp.hours

 << “\nGROSS PAY:\t << emp.grossPay;

}

Write a program segment to read the information about an employee, compute its gross pay, and print its

name, pay rate, number of hours worked, and gross pay.

EmployeeInfo emp; // to hold the information about the employee

/*-------------------------- read the information about the employee -----------------------------*/

emp = readInfo();

/*-------------------------compute the employee’s gross pay ---------------------------------------*/

computeGpay1(emp);

/*------------------------- print the information about the employee ------------------------------*/

printInfo(emp);

Exercise F18

 Given the following structure:

 struct Demo

 {

 int first,

 second;

 };

Do the following:

1.

a. Write a function readDemo() that reads the values for the member variables of a structure

Demo and returns that structure.

b. Write a code segment to define a Demo structure variable named temp and to read values into its

members variables by calling function readDemo().

2.

a. Write a function addDemo() that receives as arguments two Demo structures as value

parameters, and then builds and returns another Demo structure such that the values of its

members variables are the sums of the values of the corresponding member variables of the

structures received as arguments.

©2011 Gilbert Ndjatou Page 199

b. Write a code segment to create the Demo structure variable demoR such that the values of its

member variables are the sums of the values of the corresponding member variables of the Demo

structures demo1 (with values 5 and 7 respectively) and demo2 (with values 10 and 15

respectively). The sums of the values of the member variables of the structure variables are

computed by calling the function addDemo() defined above.

3.

a. Write a void function updateDemo1() that has a Demo structure as a reference parameter. This

function adds 10 to the value of the first member variable of the structure, and subtracts 5 from

the value of its second member variable.

b. Write a code segment to define a Demo structure variable named temp with its member variables

initialized with 6 and 7 respectively. It then adds 10 to the value of its first member variable and

subtracts 5 from the value of its second member variable by calling function updaDemo1().

Programs with two or more Source Modules

 The functions that make up a C++ program may be stored in one or more files called source files.

 A global variable defined in one source file may be accessed in another source file only if it has been

declared (but not defined) in that source.

 You declare (without defining) a global variable by preceding its declaration statement with the

keyword extern.

 A new memory location is not created for a variable whose declaration statement is preceded with

the keyword extern.

 The prototype of a function defined in another source module may also be preceded with the

keyword extern, but this is not necessary.

©2011 Gilbert Ndjatou Page 200

/*************************** Source file progA.cpp ***************************

 Program to process a salesman’s total sales in one or more cities

 ***/

 #include <iostream>

 using namespace std;

 double processSales(void); //to read total sales and compute their sum

 double computeAvgeSale(double) // to compute the average sale

 int cityCount; // to hold the number of cities

 int main()

 {

 double totalSale; // to hold the salesman’s sum of all cities total sales

 /*--read the salesman total sales in all the cities and compute their sum--*/

 totalSale = processSales();

 cout << endl << “You have made sales in: “ << cityCount << “

cities”;

 cout << endl << “The sum of all your total sales in all the cities is:\t”

 << totalSale;

 /*---------- compute the salesman’s average total sale in one city ------- */

 cout << endl << “Your average total sale in one city is:\t”

 << computeAverageSale(totalSale);

 return 0;

 }

©2011 Gilbert Ndjatou Page 201

/******************************* Source file progB.cpp ***********************/

 #include <iostream>

 using namespace std;

 #define DUMMYSALE -99

 extern int cityCount; //declare the variable to hold the number of cities

 /*------------- definition of the function processSales() ------------------*/

 /* read the salesman total sales in one or more cities and compute their sum */

 double processSales ()

 {

 double citySale, // to hold a city total sale

 sumSale ; // to hold the current total sales

 cityCount = 0;

 sumSale = 0;

 /*------- read the total sales in all the cities and compute their sum ---*/

 cin >> citySale;

 while(citySale != DUMMYSALE)

 {

 sumSale += citySale;

 cityCount++ ;

 cin >> citySale;

 }

 return(sumSale);

 }

 /*---------------definition of function ComputeAverageSale() ---------------*/

 /* compute a salesman average total sale in a city

 */

 double computeAverageSale(double total)

 {

 return(total / cityCount);

 }

 When a program consists of two or more source modules, the function prototypes of the functions in

a source module are in general stored in a header file that is included in every source module in

which one or more of these functions are called.

 /************************* Header file progB.h *******************************/

 double processSales(void); //to read total sales and compute their sum

 double computeAverageSale(double); // to compute the average sale

©2011 Gilbert Ndjatou Page 202

/**************************** Source file progA.cpp ***************************

 Program to process a salesman’s total sales in one or more cities

 ***/

 #include <iostream>

 using namespace std;

 #include “progB.h”

 int cityCount; // to hold the number of cities

 int main()

 {

 double totalSale; // to hold the salesman’s sum of all cities total sales

 /*--read the salesman total sales in all the cities and compute their sum--*/

 totalSale = processSales();

 cout << endl << “You have made sales in: “ << cityCount << “

cities”;

 cout << endl << “The sum of all your total sales in all the cities is:\t”

 << totalSale;

 /*---------- compute the salesman’s average total sale in one city ------- */

 cout << endl << “Your average total sale in one city is:\t”

 << computeAverageSale(totalSale);

 return 0;

 }

Compiling, Linking, and Execution a Program with two or more source

modules

 The following are the steps that you must follow to execute a program with two or more source

modules:

1. Compile each source module to create the corresponding object module: on our UNIX system,

the command to compile the above source modules are:

 g++ -c progA.cpp the object file progA.o is created

 g++ -c progB.cpp the object file progB.o is created

2. Use the linker to combine all the object modules and the library functions called in your

program into an executable module: on our UNIX system, the command to combine the above

object modules and the library functions that are called in them into the executable file prog.bin

follows:

 g++ progA.o progB.o -o prog.bin

©2011 Gilbert Ndjatou Page 203

Function Templates

 A function template is an alternative way to overloading a function name when all the functions

have the same number of parameters but with different data types.

 For example, suppose that in a program we have to write three functions: The first interchanges the

values of two character variables, the second one interchanges the values of two integer variables,

and the last one interchanges the values of two double precision variables. Instead of writing the

three separate functions, we can write a template function that can be used in any of the above three

situations.

 C++ automatically generates separate function template specializations to handle each type of call

appropriately.

 A template function definition begins with the keyword template followed by a template

parameter list specified in angle brackets as follows:

 template < class T1, class T2, . . . , class Tn > or

 template < typename T1, typename T2, . . . , typename Tn >

Where: T1, T2, . . . , Tn are the type parameters that represent the different data types that will

be used in the definition of the function template.

Example

Function template of functions to interchange the values of two variables

template <class T>

void swapValues(T & var1 , T & var2)

{

 T temp;

 temp = var1;

 var1 = var2;

 var2 = temp;

}

Example

Function template that receives variables in two data types and output the maximum size of those

variables/ data types.

©2011 Gilbert Ndjatou Page 204

Note:

 C++ provides a compile-time unary operator named sizeof with the following syntax:

 sizeof <variable> returns the number of bytes used to represent <variable>.

 sizeof (<variable>) returns the number of bytes used to represent <variable>.

sizeof <array-name> returns the number of bytes in the array with name <array-name>.

sizeof (<array-name>) returns the number of bytes in the array with name <array-name>.

 sizeof (<data-type>) returns the number of bytes used to represent a variable with the data type

<data-type>.

Examples

 int inum, list[10];

 double dnum;

 cout << “\n size of inum is:\t” << sizeof inum;

 cout << “\n size of int is:\t” << sizeof (int);

 cout << “\n size of list is:\t” << sizeof (list);

 cout << “\n size of dnum is:\t” << sizeof dnum;

 cout << “\n size of double is:\t” << sizeof (double);

 Output

 size of inum is: 4

 size of int is: 4

 size of list is: 40

 size of dnum is: 8

 size of double is: 8

Note that since the operator sizeof is a compiler-time operator, it cannot be used in a function to

determine the size of an array passed to that function as an argument as follows:

void funct(int list[])

{

 int size = sizeof (list)/ sizeof(int);

 . . .

}

©2011 Gilbert Ndjatou Page 205

template <class T1, class T2>

int largest(T1 &var1, T2 &var2)

{

 int max;

 if (sizeof(var1) > sizeof(var2))

 max = sizeof(var1);

 else

 max = sizeof(var2);

 return max;

}

Notes

 Functions templates do not have function prototypes: they must therefore be included in any source

module in which they are called.

 One way to use functions templates in a program is to place them in a header file and to include that

header file in any program where the function template is called.

Example

/*-- Program to read two values and to compute the difference of the largest value minus the smallest -*/

template <class T>

void swapValues(T & var1 , T & var2)

{

 T temp;

 temp = var1;

 var1 = var2;

 var2 = temp;

}

int main()

{

 int inum1, inum2;

 double dnum1, dnum2;

 /*------ read two integer values and compute the difference of the largest minus the smallest -----*/

 cin >> inum1 >> inum2;

 if(inum1 < inum2)

 swapValues(inum1, inum2);

 cout << inum1 – inum2;

 /*- read two double precision values and compute the difference of the largest minus the smallest */

 cin >> dnum1 >> dnum2;

 if(dnum1 < dnum2)

 swapValues(dnum1, dnum2);

 cout << dnum1 – dnum2;

 return 0;

}

©2011 Gilbert Ndjatou Page 206

Exercise F19

Write the function template of functions to find the maximum of three values.

